La IA predice la estructura de casi todas las proteínas conocidas por la ciencia
La compañía DeepMind, propiedad de Google, con su programa AlphaFold de inteligencia artificial y la colaboración del Instituto Europeo de Bioinformática, ha logrado predecir la forma de más de 200 millones de proteínas de los organismos de la Tierra. Los resultados se ofrecen de forma abierta a la comunidad científica para ayudar a investigar los seres vivos y resolver problemas globales como el hambre y las enfermedades.
Mediante inteligencia artificial (IA), la empresa británica DeepMind y el Instituto Europeo de Bioinformática del Laboratorio Europeo de Biología Molecular (EMBL-EBI) han conseguido realizar predicciones de las estructuras tridimensionales de casi todas las proteínas conocidas y catalogadas por la ciencia para ofrecerlas, de forma gratuita y abierta, en la base de datos de estructuras de proteínas AlphaFold.
Esta herramienta y base de datos de DeepMind, adquirida a su vez por Google en 2014, se ha ido desarrollando en los últimos años, pero la novedad ahora es que se amplía unas 200 veces, de casi un millón de estructuras de proteínas a más de 200 millones, cubriendo casi todos los organismos de la Tierra cuyo genoma ha sido secuenciado.
Esta actualización incluye estructuras proteicas predichas para una amplia gama de especies, incluidas plantas, bacterias, animales y otros organismos, lo que abre nuevas vías de investigación en las ciencias de la vida que tendrán un impacto en desafíos globales, como la sostenibilidad, la falta de alimentos y enfermedades olvidadas, según ha anunciado EMBL-EBI en un comunicado.
Este lanzamiento abrirá nuevas vías de investigación, como el apoyo a la bioinformática y el trabajo computacional, al permitir a los investigadores detectar patrones y tendencias en la base de datos. También se presentarán las estructuras predichas de las proteínas en un repositorio central de datos gratuito de referencia denominado UniProt (universal protein).
“AlphaFold ahora ofrece una vista en 3D del universo de las proteínas”, destaca Edith Heard, directora general de EMBL. Por su parte, Demis Hassabis, fundador y director ejecutivo de DeepMind, añade: “Nos ha sorprendido la velocidad a la que se ha convertido en una herramienta esencial para cientos de miles de científicos en laboratorios y universidades de todo el mundo”.
“Desde la lucha contra las enfermedades hasta la contaminación por plásticos, AlphaFold ya ha permitido un impacto increíble en algunos de nuestros mayores desafíos globales –añade–. Nuestra esperanza es que esta base de datos ampliada ayude a muchos más científicos en su importante trabajo y abra vías completamente nuevas de descubrimiento”.
Una herramienta esencial para la ciencia
DeepMind y EMBL-EBI lanzaron AlphaFold en julio de 2021, con más de 350 000 predicciones de estructuras de proteínas, incluido el proteoma humano completo. Las actualizaciones posteriores permitieron la adición de repositorios como UniProt y 27 nuevos proteomas, 17 de los cuales representan enfermedades tropicales desatendidas que continúan devastando las vidas de más de mil millones de personas en todo el mundo.
En poco más de un año, más de mil artículos científicos han citado esta base de datos y más de 500 000 investigadores de más de 190 países han accedido a AlphaFold para ver más de dos millones de estructuras.
La comunidad científica también la ha aprovechado para crear y adaptar herramientas como Foldseek y Dali, que permiten a los usuarios buscar entradas similares a una determinada proteína. También se han adoptado las ideas centrales de aprendizaje automático que están detrás de este programa de inteligencia artificial para desarrollar una lista de nuevos algoritmos en este espacio, o aplicarlos en áreas como la predicción de la estructura del ARN o crear nuevos diseños de proteínas.
Aplicación en multitud de investigaciones
Según sus promotores, AlphaFold también ha ayudado a mejorar nuestra capacidad para combatir la contaminación de los plásticos, obtener información sobre la enfermedad de Parkinson, aumentar la salud de las abejas melíferas, comprender cómo se forma el hielo, abordar enfermedades desatendidas como la enfermedad de Chagas y la leishmaniasis, y explorar la evolución humana.
“Lanzamos AlphaFold con la esperanza de que otros equipos pudieran aprender y aprovechar los avances que hicimos, y ha sido emocionante ver que esto ha sucedido tan rápido. Muchas otras organizaciones de investigación de IA se han introducido ahora en este campo y están aprovechando sus ventajas para seguir avanzando. Es realmente una nueva era en la biología estructural, y los métodos basados en inteligencia artificial impulsarán un progreso increíble”, destaca John Jumper, científico responsable de esta herramienta en DeepMind.
“AlphaFold ha causado revuelo en la comunidad de biología molecular: solo en el último año, ha habido más de mil artículos científicos que la han utilizado, nunca había visto algo así”, subraya Sameer Velankar de EMBL-EBI, “y este es solo el impacto de un millón de predicciones, imagina tener ahora más de 200 millones de predicciones de estructuras de proteínas accesibles abiertamente en esta base de datos”.
DeepMind y EMBL-EBI continuarán actualizando AlphaFold periódicamente para mejorar sus características y funcionalidad en respuesta a los comentarios de los usuarios. El acceso a las estructuras seguirá siendo completamente abierto, bajo una licencia Creative Commons, y las descargas masivas estarán disponibles a través de Google Cloud.